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Summary

1.

 

Forecasting migration intensity can improve flight safety and reduce the operational
costs of  collisions between aircraft and migrating birds. This is particularly true for
military training flights, which can be rescheduled if  necessary and often take place at
low altitudes and during the night. Migration intensity depends strongly on weather
conditions but reported effects of weather differ among studies. It is therefore unclear
to what extent existing predictive models can be extrapolated to new situations.

 

2.

 

We used radar measurements of  bird densities in the Netherlands to analyse the
relationship between weather and nocturnal migration. Using our data, we tested the
performance of three regression models that have been developed for other locations in
Europe. We developed and validated new models for different combinations of years to
test whether regression models can be used to predict migration intensity in independent
years. Model performance was assessed by comparing model predictions against bench-
mark predictions based on measured migration intensity of  the previous night and
predictions based on a 6-year average trend. We also investigated the effect of the size of
the calibration data set on model robustness.

 

3.

 

All models performed better than the benchmarks, but the mismatch between
measurements and predictions was large for existing models. Model performance was
best for newly developed regression models. The performance of all models was best at
intermediate migration intensities. The performance of our models clearly increased
with sample size, up to about 90 nocturnal migration measurements. Significant input
variables included seasonal migration trend, wind profit, 24-h trend in barometric
pressure and rain.

 

4.

 

Synthesis and application

 

s. Migration intensities can be forecast with a regression
model based on meteorological data. This and other existing models are only valid
locally and cannot be extrapolated to new locations. Model development for new
locations requires data sets with representative inter- and intraseasonal variability so that
cross-validation can be applied effectively. The Royal Netherlands Air Force currently
uses the regression model developed in this study to predict migration intensities 3 days
ahead. This improves the reliability of migration intensity warnings and allows rescheduling
of training flights if  needed.
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Introduction

 

Collisions with birds pose serious safety risks for
aviation and by 1999 had resulted in the loss of at least
52 civil and 283 military aircraft (Allan 2002). Although
such accidents are rare and 65% of the bird strikes do
not result in damage at all, the global cost of bird
strikes, including the effects of cancelled flights and
delays, are estimated at 1–1·5 billion USD year

 

–1

 

 (Allan
2002). Most bird strikes take place during take-off  and
landing, but chances of bird strikes 

 

en route

 

 increase
dramatically during peak periods of bird migration
(Blokpoel 1976; Sodhi 2002; Dekker, van Gasteren &
Shamoun-Baranes 2003). For military training flights,
which often occur at low altitudes and during nocturnal
hours, these increased risks are particularly important;
in contrast with civil aviation, rescheduling of military
training flights is often possible. Therefore, in order to
improve flight safety, several air forces issue bird
migration intensity warnings, which result in flight
restrictions and occasionally flight cancellations (for
example see https://www.notams.jcs.mil/common/
birdtam.html, accessed 24 April 2007). Migration
intensity warnings for the Royal Netherlands Air Force
(RNLAF) are based on radar measurements of bird
densities (bird echoes km

 

2

 

) from the north of  the
Netherlands (Buurma 1995). Spatial extrapolation
over the rest of the Netherlands and adjacent countries
is based on expert judgement of observed bird flight
directions and knowledge of  seasonal patterns.
Multiday forecasts of migration intensities were not
available before this study. The great impact of migra-
tion warnings on flight operations, their spatial uncer-
tainties and abrupt temporal changes have prompted
the RNLAF to improve the reliability of the warnings
and investigate the potential of migration forecasts.

Several migratory flyways pass the Netherlands. In
autumn, the most important flyway consists of passerines
migrating from Scandinavia towards southern Europe
and Africa, crossing the east of  the Netherlands in
a south-westerly direction (Berthold 2001). Another
very important flyway consists of birds from north-east
Europe wintering in the British Isles. These birds cross
the north of the Netherlands in a west-south-westerly
direction and usually follow the western coast of  the
Netherlands to cross the North Sea further south (Lack
1963). A few times each autumn, massive numbers of
migrants cross the Netherlands in a southerly direction.
According to their arrival times in the second half  of
the night, these birds apparently depart from Norway
and cross the North Sea in a direct flight, landing in the
northern part of the Netherlands (Buurma 1987).

Since the late 1950s, radars have been used to quantify
bird migration (Sutter 1957; Buurma 1995; Bruderer
1997; Gauthreaux & Belser 1998) and to model the
relationships between bird migration and weather with
multivariate statistics (Nisbet & Drury 1968; Alerstam
& Ulfstrand 1972; Able 1973). In several countries
regression models have been developed to prevent

collisions of aircraft with birds (Blokpoel 1969; Geil

 

et al

 

. 1974) and to assess the impact of wind turbines on
migratory bird populations (Gauthreaux & Belser
2003; Barrios & Rodrígues 2004). Wind, rain, sea-level
pressure, temperature, cloud cover and derivatives of
all of these are the common predictors of migration
(Richardson 1990; Zehnder 

 

et al

 

. 2001; Erni 

 

et al

 

. 2002;
Schaub, Liechti & Jenni 2004). However, the relative
contributions of these meteorological variables to pre-
dictions of migration densities differ strongly between
studies. This raises the question: can weather-based
models be extrapolated beyond the calibration domain
to predict bird migration intensities in new situations?

In order to improve migration warnings for the
RNLAF, our first objective was to determine how well
existing regression models from other locations on the
south-westerly migratory flyway in Europe predict
migration intensities over the north of the Netherlands.
We tested this by applying three existing models that
describe the relationships between weather and migra-
tion intensities to Dutch weather data and measured
migration densities. Each model consists of input vari-
ables and their coefficients. Our second objective was to
develop a regression model that would provide more
robust and precise nocturnal migratory intensity pre-
dictions for the Netherlands than the existing models.
In ecological studies focusing on the influence of
meteorological conditions on the spatial and temporal
distribution of organisms, the variability in the data
and the size of the data set are known to have a strong
influence on model robustness (Beck 2002). Therefore
our third objective was to determine the minimum
calibration sample size for creating robust models.

 

Materials and methods

 

  

 

The S-band (10-cm wavelength) 20-MW medium-power
radar (Thomson ARES, Thomson ICF, Bagneux,
France) used in this study is situated in the north-east
of the Netherlands and detects birds for up to 150-km
distances. The measurement window is located 50–60 km
from the radar, 20–60 km from the northern coast of the
Netherlands, with its centre at 52

 

°

 

54

 

′

 

N and 6

 

°

 

11

 

′

 

E, and
has a total surface of 850 km

 

2

 

. The sampled altitudes in
the measurement window range from 100 to 1100 m.

Nocturnal autumn migration intensities were measured
from 1 August until 15 November of 2001, 2002 and 2003.
During 10 min of each hour, bird echoes were extracted
from the radar image with the automated tracking algo-
rithm of ROBIN (radar observations of bird intensities
and numbers, developed by TNO Defense, Security
and Safety, The Hague, the Netherlands). Migration
intensity was defined as the number of  bird echoes
per km

 

2

 

, automatically corrected for the area with
unwanted echoes from land or rain (‘clutter’) within
the image (Buurma 1995). The altitude range of the
radar beam is generally greater than the upper limit of

https://www.notams.jcs.mil/common/
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migration, but within the measurement window the
altitude distribution cannot be determined. Therefore
we expressed migration intensity as echo density per unit
area (km

 

2

 

) in the 100–1100 altitude band, rather than
per unit volume, as is common in radar ornithology.

Gaps in the data set were generally because of radar
downtime, particularly in September 2001, and intense
rain clutter. During intense rain, resulting in 100% rain
clutter detection, migration intensity was set to 0. In
several of the hourly measurements (

 

<

 

 0·01% of all
measurements), bird echoes were wrongly classified as
rain because of the high aerial bird densities (exceeding
50 echoes km

 

–2

 

). Migration intensities were then
corrected manually from the clutter numbers. Another
phenomenon that affected data quality was ‘anomalous
propagation’, which occurred when the radar beam
was trapped below a low-level temperature inversion
layer. As a result, the air was sampled at lower altitudes
than usual, leading to larger land clutter areas and
wrongly sampled bird densities. Measurements with
anomalous propagation were excluded from the analysis.

Before analysis, the radar data were pre-processed.
Nights with more than 50% missing data were omitted
from further analysis. Nights with complete hourly
measurements were used to establish a standard hourly
nocturnal trend. Missing values in the data set were
then interpolated using the measured hourly intensities
of that night and the standard nocturnal trend,
adjusted for the length of the night. Finally, the total
nocturnal migration intensity used in all subsequent
analyses was the sum of hourly nocturnal migration
intensities between sunset and sunrise. This resulted

in 214 measurements of total nocturnal migration inten-
sity 

 

I

 

N

 

 (echoes km

 

–2

 

 night

 

–1

 

; Fig. 1; yearly summaries
Table 1). To meet normality requirements for the
regression analyses, migration intensities were trans-
formed to their natural logarithm (Zar 1984).

Mean nocturnal migration intensities, measured
during 1989–95 with the same radar, were used to
establish a seasonal migration intensity trend. This
trend served as a baseline for our models and was used
as an independent input variable (

 

I

 

b

 

) in addition to
meteorological variables that were expected to explain
deviations from the seasonal trend.

 

  

 

Meteorological surface measurements of barometric
pressure (

 

P

 

), temperature (

 

T

 

), wind speed (

 

S

 

w

 

), wind
directions (

 

α

 

w

 

) and precipitation (

 

R

 

) were taken from
the meteorological station Eelde (53

 

°

 

10

 

′

 

N and 6

 

°

 

35

 

′

 

E),
25 km north-east of the centre of the migration measure-
ment window (source Netherlands Meteorological
Institute KNMI, De Bilt, the Netherlands). In addition,

Fig. 1. Measured total migration intensities (IN) for 2001 (a), 2002 (b) and 2003 (c), not log-transformed. For 7 October 2002 and
12 October 2003, peaks are not shown (167 and 352 bird echoes km–2, respectively). Light grey bars represent missing data.

Table 1. Summary of bird measurement data: mean number
of nights, means and standard deviations of migration
intensities

Year n Mean σ

2001 58 17·71 27·48
2002 79 19·52 27·08
2003 77 28·35 46·15
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wind speeds and directions at 1000, 925 and 850 hPa
pressure levels (approximately 0, 750 and 1500 m altitude,
respectively) were taken from sounding data measured
at Emden (53

 

°

 

21

 

′

 

N and 7

 

°

 

13

 

′

 

E), 65 km north-east of
the centre of the migration measurement window (source
NOAAs National Oceanic & Atmospheric Adminis-
tration, Washington, US) radiosonde database; http://
raob.fsl.noaa.gov/, accessed 24 April 2007).

All sounding and surface data were collected at
23:00 UTC (Universal Time Code). Additionally, hourly
precipitation amounts from Eelde were integrated over
the period between sunset and sunrise. Twenty-eight
weather variables were tested. These included several
derivatives of surface and altitudinal wind speeds and
directions, barometric pressure, temperature and pre-
cipitation. A description of all input variables that were
tested and how they were derived is included in Table 2.

 

  

 

To quantify the prediction performance of models, we
used the root mean squared error (RMSE) and com-
pared the 95 percentile range of predictions with the 95
percentile range of measurements. We compared the 95
percentile range because of the technical limitations
influencing measurements at extremely low and high
migration intensities (see migration intensity data for
more details). The RMSE of  each model was also
compared with two benchmarks: (i) prediction of bird
migration by the measured intensity of the previous
night (RMSE 

 

=

 

 1·41) and (ii) prediction of bird mig-
ration intensity by the baseline seasonal trend (

 

I

 

b

 

,
RMSE 

 

=

 

 1·23).

 

 

 

To test whether existing models can be extrapolated to
new locations, we applied three log-linear regression
models from southern Sweden (Zehnder 

 

et al

 

. 2001),
Denmark (Geil 

 

et al

 

. 1974) and southern Germany
(Erni 

 

et al

 

. 2002) to the Dutch bird migration and
meteorology data from 2001 to 2003. These studies
explained 0·44–0·70 of the variance in local migration
intensity or traffic rate.

The model for southern Sweden, 

 

M

 

S

 

, is based on
nightly means of migration traffic rates (birds km

 

–1

 

 h

 

–1

 

),
obtained with a passive infra red camera in fixed up-
right position, recorded from 7 August to 28 October 1998
(Zehnder 

 

et al

 

. 2001). This model relates the natural
logarithm of nocturnal migration traffic rates, 

 

I

 

S

 

, to
barometric pressure, 

 

P

 

 (hPa), 24-h change in baro-
metric pressure, 

 

∆

 

P

 

 (hPa), wind speed, 

 

S

 

w

 

 (m s

 

–1

 

) and
tail wind speed, 

 

W

 

t

 

225

 

 (m s

 

–1

 

):

eqn 1

The model for Denmark, 

 

M

 

D

 

, is based on 4 years
(1968–71) of radar data from an airfield surveillance

radar with a wavelength of 20 cm (Geil 

 

et al

 

. 1974). We
applied their September model to the Dutch data from
September. 

 

M

 

D

 

 relates the natural logarithm of mig-
ration intensity, 

 

I

 

D

 

 (bird echoes km

 

–2

 

), in the first half  of
the night to 

 

P

 

 (hPa), 

 

∆

 

P

 

 (hPa), temperature 

 

T

 

 (

 

°

 

C) and
lateral wind drift 

 

W

 

d

 

200

 

 (m s

 

–1

 

), defined as the wind
speed component perpendicular to a mean flight direc-
tion of 200

 

°

 

:

eqn 2

The model for Germany, 

 

M

 

G

 

, is based on conical scans
with a pencil beam of a small-scale 3-cm wavelength
tracking radar during one autumn season, 1 August to
29 October 1987 (Erni 

 

et al

 

. 2002). For this model, four
migration density measurements (bird echoes km

 

–2

 

)
per night were summed to calculate nocturnal mig-
ration intensity. The natural logarithm of migration
intensity (

 

I

 

G

 

) is related to unfavourable wind (

 

W

 

u

 

7

 

),
nightly proportion of hours with rain (

 

R

 

pG

 

), the effect
of accumulated nights with rain (

 

Acc

 

r

 

) and two short-
term trend variables that account for the increasing
(

 

I

 

Gu

 

) and decreasing (

 

I

 

Gd

 

) migration intensities at the
start and the end of the season:

eqn 3

Quantifying bird migration intensity with different
measurement techniques and for different periods may
lead to different absolute numbers. Therefore we cor-
rected each model by subtracting the mean differences
between predicted and observed values. Theoretically,
these correction factors are multiplicative for non-
logarithmic measurements and therefore additive for
the logarithmic models. Consequently, the correction
does not affect the coefficients that reflect the relative
importance of the explanatory variables in the models.

 

    

 

We developed new regression models for the Dutch
bird density and weather data to acquire more robust
and precise predictions of migration intensity over the
Netherlands than existing models yielded. The base-
line migration intensity (

 

I

 

b

 

, echoes km

 

–2

 

 night

 

–1

 

) was
included as an input variable to represent the seasonal
migration intensity trend (see the Migration intensity
data). We analysed 28 weather variables, including
those from the existing models. Here we present only
the variables included in our final models. Explanatory
variables included the total nocturnal rainfall (mm) (

 

R

 

t

 

),
the proportion of hours with rain intensity 

 

>

 

 0·01 mm
h

 

–1

 

 between sunset and sunrise (

 

R

 

p

 

), 

 

P

 

, 

 

T

 

 and their 24-h
increments (

 

∆

 

P

 

 and 

 

∆

 

T

 

, respectively). We quantified
the influence of wind direction and speed on the bird’s
flight direction and ground speed by calculating the
wind profit, which is the distance the wind would carry

I S W P PS w t          = ⋅ − ⋅ + ⋅ − ⋅ + ⋅26 98 011 0 06 0 02 0 03225 ∆

I P T P WD d= − ⋅ + ⋅ + ⋅ + ⋅ + ⋅5012 0 054 0105 0 0291 0 469 200∆

I I I
W R Acc

G Gu Gd

u pG r

        
    

= ⋅ − ⋅ − ⋅ +
⋅ − ⋅ + ⋅

5 41 0 04 015
012 0 60 0137

http://
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Table 2.

 

Description of  input variables tested in predictive models

Variable Name Units Description

 

T

 

Temperature

 

°

 

C Surface temperature

 

∆

 

T

 

24-h temperature increment

 

°

 

C day

 

–1 24-h surface temperature increment
∆T2 24-h temperature increment for 

the second half  of the season
°C day–1 24-h surface temperature increment, from 15 September until 15 November. 

Until 15 September, value was set to 0
Td Deviation from average temperature °C day–1 Deviation from average surface temperature for 1991–2000 at Eelde
P Barometric pressure hPa Sea-level barometric pressure
∆P 24-h pressure increment hPa day–1 24-h increment in sea-level barometric pressure
Sw Surface wind speed m s–1 Surface wind speed
Αw Surface wind direction ° Surface wind direction
Wt225 Tail wind speed (225°) m s–1 Surface wind speed component towards a mean flight direction of 225° (Zehnder et al. 2001)
Wd200 Lateral wind drift (200°) m s–1 Surface wind speed component perpendicular to a mean flight direction of 200° (Geil et al. 1974)
Wd180 Lateral wind drift (180°) m s–1 Surface wind speed component perpendicular to a mean flight direction of 180° (Geil et al. 1974)
Wu Unfavourable wind – Categorical variable (0,1) for unfavourable wind, based on wind profit. 1 for wind 

profits Wp < threshold; the threshold was optimized manually in steps of  0·1 m s–1

Wu7 Unfavourable wind – Categorical variable for unfavourable wind, based on wind profit Wp (Erni et al. 2002). 
0 for Wp = –7 m s–1, 1 for Wp < –7 m s–1

Wp Mean wind profit m s–1 Mean of wind profits (equation 4) at 1000, 925 and 850 hPa pressure levels, calculated 
for a mean bird speed of 12 m s–1 and a mean flight direction of 223°

Wp_m Maximum wind profit m s–1 Maximum of wind profits (equation 4) at 1000, 925 and 850 hPa pressure levels, 
calculated for a mean bird speed of 12 m s–1 and a mean flight direction of 223°

Wd Mean lateral wind drift m s–1 Mean of wind speed components perpendicular to a mean flight direction of 223° and bird speed of 
12 m s–1 measured at 1000, 925 and 850 hPa pressure levels

Rp Proportion of  hours with rain – Proportion of  hours with rain intensity > 0·01 mm h–1 between sunset and sunrise
RpG Proportion of  hours with rain for MG – Proportion of  hours with rain defined as 0 to 3 thirds (Erni et al. 2002)
Rt Total nocturnal rainfall mm Sum of hourly nocturnal rainfall between sunset and sunrise
Rt_log Natural logarithm of total nocturnal rainfall mm Natural logarithm of sum of hourly nocturnal rainfall between sunset and sunrise
R23 Precipitation at 23:00 UTC mm Precipitation from 22:00 to 23:00 UTC
Accr Accumulation effect of  rain – Accumulation effect (0–1) as a result of  rain (Erni et al. 2002 and equation 5)
Accw Accumulation effect of  wind profit – Accumulation effect (0–1) as a result of  number of  nights with unfavourable wind (equation 5)
Ib Natural logarithm of baseline 

migration intensity
Bird echoes km–2 night–1 Natural logarithm of seasonal migration intensity trend for the Netherlands based on 

measurements from 1989 to 1995
IGu Increasing migration trend – Increasing migration trend in Germany (Erni et al. 2002)
IGd Decreasing migration trend – Decreasing migration trend in Germany (Erni et al. 2002)
Ddoy Day of year – Day of year (1–365)
Ib_nl Baseline migration intensity Bird echoes km–2 night–1 Seasonal migration intensity trend for the Netherlands based on measurements from 1989 to 1995
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a bird towards its destination per unit time. Wind pro-
fits were calculated from the wind vector (consisting of
wind speed, Sw, and wind direction, αw) and the mean
bird vector (bird speed, Sb, and bird direction, αb): wind
profit was defined as the length of the bird vector minus
the length of the displacement vector (Erni et al. 2002):

eqn 4

The mean flight direction, αb, and speed, Sb, were
set to 223° and 12 m s–1, respectively. The mean flight
direction represents the mean of two predominant
migratory directions over the Netherlands mainland
based on expert knowledge and radar measurements.
Using sounding measurements of wind, mean wind
profit, Wp (m s–1), was calculated as the mean of all
wind profits up to pressure level 850 hPa. Note that Wp

can attain negative values in headwind conditions, with
strong lateral wind or with very strong tailwinds. The
categorical variable for negative wind profits, Wu, was
set to 1 for wind profits lower than a negative threshold;
this threshold was optimized manually in steps of 0·1 m
s–1. Furthermore, a variable representing the potential
accumulation of migrants because of previous nights
with unfavourable weather was adopted from Erni
et al. (2002), so that:

eqn 5

where Acc is the accumulation effect, U is the variable
for unfavourable weather, t relates to the current night
and t – 1 relates to the previous night. Ut–1 was set to 1
if  unfavourable weather occurred during the previous
night, thus increasing the potential accumulation of
migrants (Acct). Independent accumulation variables
were derived for the effect of rain (Accr) and the effect
of unfavourable wind profit (Accw), based on Rp > 0 or
Wp < Wu, respectively. All variables were normalized
using the z-scores to enable comparison of the relative
effects of the variables within each tested model.

   

The mean and variance of migration intensities
(Table 1) did not differ significantly between years
(, P < 0·05). Therefore we treated the data set as
homogeneous. Multivariate log-linear regression models
were identified and tested by applying cross-validation
to different splits of the 3-year data set, following the
guidelines for model building as put forward by Hastie,
Tibshirani & Friedman (2001), Beck (2002) and
Burnham & Anderson (2002). The steps in the cross-
validation cycle are outlined as follows. First, the data
set was split into a part for model calibration and a part
for model validation. Next, all significant models up to
a maximum of four explanatory variables were fitted
using the calibration data. The four variables were

combinations of the 28 available variables listed in
Table 2 and 28 randomly permuted variables. Finally,
the performance of each significant model was evaluated
for the validation data, using the RMSE. The most
adequate model was found by selecting those models
with the lowest RMSE. In total, six data splits were
made using the data in 2001, 2002, 2003, 2001 + 2002,
2001 + 2003 and 2002 + 2003 for calibration, while
using the remaining data for validation. The models
fitted on these different data splits were named M1,
M2, M12 (etc.) when using the data for 2001, 2002,
2001 + 2002 (etc.) for calibration. By including a
randomly permutated dummy variable for each expla-
natory variable, the above framework automatically
checks for random significance. Permuted variables
should never be selected as explanatory by this procedure.
If  any permuted variables are selected, the data set or
model framework is invalidated (Good 2000). Accord-
ing to Stone (1977), Shao (1997) and Hastie, Tibshirani
& Friedman (2001), leave-one-out cross-validation is
equivalent to using an Akaike’s Information Criterion
(AIC) criterion in the calibration phase only, and
leave-n-out cross-validation is equivalent to a Bayesian
information criterion (BIC) criterion. By following the
leave-n-out cross-validation procedure in our study as
described above, model over-parameterization is pre-
vented and the results are equivalent to the use of the
BIC in model calibration.

To investigate the importance of calibration sample
size on robustness of  the input variables, we used a
different approach for splitting data into calibration
and validation sets. In this case the models were fitted
on randomly selected calibration sets of different sizes:
30, 60, 90 and 120 data points. For each calibration set
size, the data set was randomly split 2000 times into
calibration and validation sets. Validation sets always
contained 80 data points. Regression models were
calculated and validated with each randomized set
(8000 in total).

Results

    
 

Predictions of nocturnal migration intensity by existing
models were better than the benchmarks (Table 3)
after correction for the different methods of measuring
migration intensity. The RMSE for each model
equalled about 25% of the range of the measurements.
The range of predicted values was much lower than
that of the measurements; for example, only 32% of the
measured range was predicted by MG (Fig. 2).

     


The new regression models contained two to four sig-
nificant input variables (Table 4): baseline migration

W S S S S Sp b b w b w w b              cos(   ) = − + − ⋅ ⋅ ⋅ −2 2 2 α α

Acc Acc Ut t t        = ⋅ + ⋅− −
1
3

2
31 1
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intensity Ib, wind profit Wp, 24-h trend in barometric
pressure ∆P and nocturnal proportion of hours with
rain Rp. Ib and Wp were the most important input vari-
ables in all the new models; together, they explained
at least 40% of the measured variance. ∆P was a signifi-
cant variable for all subsets of years except for 2001. Rp

was significant in all models based on 2 and 3 years and
in M2 but its contribution to the total explained variance
was small compared with the contributions of other
input variables. The coefficients of the input variables

were of similar orders of magnitude between models.
Comparison of the normalized coefficients showed
that Wp had the largest effect on migration intensity:
the contribution of Wp to the predicted values was on
average 2·4 times as high as the contribution of ∆P, 3·5
times as high as Rp and 1·6 times as high as Ib.

Prediction performances of all new models were
much better than the benchmarks and existing models
(Table 5 and Fig. 3). Validation RMSEs were generally
lower and predicted ranges were much closer to meas-
ured ranges (80–84% of the measured range; Fig. 4).
Validation RMSEs of models calibrated with 2 years
(RMSE 0·81–0·89) were lower, and differences between
models were smaller, than for models based on single
years (RMSE 0·88–0·96). Following validation of each
model with independent years, it was clear that, on
average, M2 predictions, were too low for 2001 and 2003.

      


Model structure and validation performances were more
robust for larger calibration sets (Table 6). Calibrations

Table 5. Prediction performance of new models: validation
RMSE, mean difference between predictions and measure-
ments (�), and predicted range of values (Rpred)

Validation 
period RMSE ∆ Rpred

M1 2002 0·96 0·36 1·05–4·35
2003 0·88 0·01 0·87–4·40
2002 + 2003 0·92 0·19 0·98–4·40

M2 2001 0·96 –0·36 –0·42–3·38
2003 0·88 –0·42 –0·13–3·95
2001 + 2003 0·91 –0·39 –0·17–3·92

M3 2001 0·92 0·04 –0·09–3·96
2002 0·92 0·44 0·20–4·75
2001 + 2002 0·92 0·28 –0·09–4·58

M12 2003 0·81 –0·24 0·30–4·16
M13 2002 0·86 0·40 0·31–4·62
M23 2001 0·89 –0·21 –0·38–3·67

Fig. 2. Prediction performance of existing models: log-transformed predicted vs. measured migration intensities (IN) for all years,
by the models MS from (a) Sweden, MD from (b) Denmark, and MG from (c) Germany, with original coefficients and added
correction factors.

Table 3. Prediction performance of existing models (MS, MD

and MG) and benchmarks on Dutch data pooled for all years.
RMSE, predicted (Rpred) and measured (Rmeas) range of values
(95% of logarithmic values), are given for model comparison.
BB and BP represent the benchmarks based on the seasonal
baseline migration intensity and migration intensity the
previous night, respectively. The Rmeas for MD includes
measurements from September only

RMSE Rpred Rmeas

MS 1·09 0·98–3·31 0·00–4·62
MD 0·92 1·19–3·83 0·42–4·30
MG 1·17 1·05–3·07 0·00–4·62
BB 1·23 1·00–3·02 0·00–4·62
BP 1·41 0·00–4·62 0·00–4·62

Table 4. New models: calibration periods, coefficients of normalized input variables
and model fit to calibration data by adjusted R2 and RMSE

Calibration period

Input variables Model fit

Ib Wp ∆P Rp R2 RMSE

M1 2001 0·593 0·741  – – 0·45 0·90
M2 2002 0·474 0·704 0·323 –0·274 0·64 0·75
M3 2003 0·395 0·900 0·360 – 0·66 0·75
M12 2001 + 2002 0·494 0·696 0·314 –0·218 0·57 0·82
M13 2001 + 2003 0·485 0·823 0·307 –0·194 0·61 0·80
M23 2002 + 2003 0·468 0·773 0·322 –0·233 0·64 0·78
M123 2001 + 2002 + 2003 0·484 0·762 0·314 –0·216 0·62 0·81
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with smaller data sets yielded fewer significant varia-
bles and a larger variation in variable significance.
Subsamples of  the data set, as small as 30 nights
only, occasionally even yielded models without Ib or
Wp, significant variables in all models with larger
sample sizes. RMSEs of  the validations were lower
and more consistent with increasing calibration
sample size: the mean RMSE decreased from 1·05 ± 0·19
to 0·89 ± 0·07.

 

For operational use in the RNLAF, we calibrated our
model with variables that were significant for all three

models M12, M13 and M23, using the data of all 3 years
(204 data points) in order to include as much informa-
tion as possible. Normalized coefficients were roughly
equal to the means of coefficients in M12, M13 and M23. As
the aim of this model was to predict actual migration
intensity, the model was converted to non-normalized
input variables:

eqn 6

This yielded a modelled range of 0·05–4·31, larger
than that of any other model developed in this study,
and a (calibration) RMSE of only 0·81.

Fig. 3. Prediction performance of new models: log-transformed predicted vs. measured migration intensities (IN). Predicted
intensities for each year result from models calibrated with the two independent years: intensities for 2001 are predicted by M23

(a), 2002 by M13 (b) and 2003 by M12 (c).

Fig. 4. Measured (bars) and predicted (circles) log-transformed migration intensities (IN) over time. Predicted intensities for each
year result from models calibrated with the two independent years: intensities for 2001 are predicted by M23 (a), for 2002 by M13

(b) and for 2003 by M12 (c). All migration intensities are given as natural logarithms + 1. Grey areas indicate dates with missing
bird data.

M I W P Rb p p123 124 0 84 0 154 0 043 0 79      .     = ⋅ + ⋅ + + ⋅ − ⋅∆
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Discussion

Existing regression models from other locations on the
south-westerly migratory flyway predict migration
intensities over the north of the Netherlands better
than predictions based on migration intensity of the
previous night or on the seasonal trend alone. However,
new models are more robust and out-perform existing
models. This study emphasizes the influence of  the
variation and size of calibration data sets for the pre-
dictive power and robustness of regression models.

Model performance was evaluated by comparing
predictions to measured migration intensities. Therefore
model results and data quality need to be addressed. In
specific conditions, such as high rain clutter, anomalous
propagation and very high bird densities, migration
intensities were corrected, partly on the basis of expert
judgement. Consequently, the quality of the migration
intensity measurements is higher in the middle of the
range than at the extremes. This is one of the possible
causes for the larger discrepancies between observations
and predictions at very high and very low migration
intensities (Figs 3 and 4).

    


Although predictions by the existing models are better
than the benchmarks, they are poor compared with the
newly developed models. All existing models use
different variables for the effect of wind. In the model
for Germany (MG), the effect of wind is represented by
a categorical variable, based on a threshold for wind
profit lower than –7 m s–1. In MG, wind can only reduce
migration intensity, whereas in the other existing
models wind can also have a positive effect on migration
intensity. Moreover, the threshold of –7 m s–1 leads to
only 12% of nights with unfavourable winds in our data

set, whereas the German data set had unfavourable
winds in 34% of all nights. The model for Denmark
(MD) only uses the lateral wind drift, whereas the model
for Sweden (MS) uses two variables, wind speed and the
tail wind component. A second cause for the differ-
ences in performance is the use of variables that are not
significant for the Dutch data set. For example, P in
MS and T in MD are not significant after recalibration
of the models with the Dutch data sets. Each existing
model appears to be site and perhaps even time specific,
therefore over-fitting of the models is probably a major
cause of the differences in model performance on new
data. This is particularly likely for MS and MG, as these
two models are based on single years of measurement
and are not validated with independent years.

    

As found in other multivariate ecological studies
(Whittingham et al. 2006), it is clear that a single year
of data is insufficient to identify the best and most
robust model. The best newly developed models are
based on subsets of 2 years. Model structures and pre-
diction performance of newly developed models based
on 2 years are very similar, but one specific year may
show lower or higher migration intensities than other
years. During validation of 2001, the independent
model M23 performed even better than the calibrated
model M1, indicating that 2001 alone contained too
little variation to develop a valuable regression model.
On the other hand, M3 fits the calibration data better
than M23, yet performance of M3 in independent years
is relatively poor. These examples nicely demonstrate
the trade-off between model fit and general applicability
of the models that is inherent to model selection.

The increased variation in model structure and
performance with smaller data subsets shows that the
calibration sample size has a pronounced effect on
robustness of the models. The  amount of variation within
the calibration set also determines model robustness.
For the number of variables and the variation con-
tained in the data for this study, the model performance
strongly improves with increasing sample size up to 90
data points and variation in model structure decreases
with increasing sample size throughout the test.

  

In this study, wind profit had the strongest influence
on migration intensity. The large impact of wind on
migration intensity is commonly found in the literature
(Alerstam 1979; Gauthreaux & Belser 1998; Liechti &
Bruderer 1998; Åkesson & Hedenström 2000; Erni
et al. 2002). The effect of barometric pressure trends
found in this study corresponds with the expected
importance of synoptic weather for migration intensity
(Richardson 1990). However, in contrast with most
theories and studies on the relationships between rain
and migration intensity (Richardson 1990; Erni et al.

Table 6. Effect of calibration sample size on model structure and performance.
Fraction of occurrence of input variables, median number of significant input variables
and the means and standard deviations of validation RMSE for sample sizes of 30, 60,
90 and 120 data points. For each sample size, regression models were calibrated with
2000 randomized samples. Validation data sets always consisted of 80 randomly
selected data points. Only variables that occurred in more than 10% of the models are
shown

Calibration sample size

n = 30 n = 60 n = 90 n = 120

Wp 0·88 1 1 1
Ib 0·59 0·94 1 1
∆P 0·18 0·44 0·63 0·80
Rp 0·11 0·19 0·30 0·47
Rt 0·13 0·25 0·25 0·21
P 0·14 0·19 0·24 0·19
∆T 0·10 0·18 0·19 0·17
Accw 0·09 0·13 0·12 0·13
Number of variables 2 3 4 4
RMSE 1·05 ± 0·19 0·93 ± 0·083 0·90 ± 0·072 0·89 ± 0·069
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2002; Schaub, Liechti & Jenni 2004), the effect of rain
in our models is limited and its exact importance is
hard to estimate. This may be related to the properties
of the rain data and the bird data, the quality of which
decreases in heavy rain. For example, the strength,
amount and duration of rain can vary greatly over time
and space, from short light showers to large-scale con-
vective systems. These factors may influence migration
differently, yet very few of these aspects are captured in
hourly measurements of rain or their derivatives. Inter-
annual variation in rainfall may also be influential. For
example, in 2002 rain events were much more evenly
spread over the season than in 2001 and 2003. This
coincides with a relatively large effect of rain in M2

compared with M1 and M3 (Table 4).
Several studies have shown that migration intensity is

not only determined by the direct influence of weather
but also by the effect of weather on the number of
‘available’ migrants (Rappole & Warner 1976; Fransson
1998; Erni et al. 2002; Pérez-Tris & Tellería 2002).
Weather may have contrasting effects on the accumu-
lation of migrants. For example, prolonged periods with
unfavourable weather may cause birds to accumulate,
having a positive effect on migration intensity.
Conversely, extended periods of good weather may
lead to decreasing numbers of migrants because of the
lack of birds following peak migration. Similarly, rare
but structural phenomena, like arrival from Norway
over the North Sea (Buurma 1987), cannot be properly
dealt with in linear regression models.

The number of weather variables tested and the sim-
ilarities between new models indicates that further
improvement of the models cannot be achieved with
additional local weather variables alone. Model per-
formance may be improved by including better variables
accounting for the accumulation of birds, particularly
for very high and very low migration intensities.

 

As part of the Netherlands Bird Avoidance Model
(http://ecogrid.sara.nl/bambas, accessed 24 April 2007),
a new Internet-based decision support system to
improve flight safety, the RNLAF has implemented
the final predictive model for operational use (M123;
equation 6). During the migration season, the model is
run 3 days ahead with forecasted meteorological variables
for the north of the Netherlands (53°15′N, 6°59′E),
available from NOAA’s Air Resource Laboratory
(http://www.arl.noaa.gov/ready/cmet.html, accessed
24 April 2007). The results are used to issue migration
intensity forecasts 3 days in advance, which are updated
daily, and may lead to rescheduling of flights if necessary.

For the RNLAF, the current mismatch between
predictions and measurements of very low migration
intensities is more problematic than for very high inten-
sities. Although underestimated, the highest migration
predictions are still well above any current standardized
flight restriction levels, and are therefore avoided.

The overestimation of low intensities requires further
attention, as this may lead to false flight restrictions,
which can be very costly.

In addition to flight safety, there are many other
sectors that can benefit from migration intensity
predictions. For example, migration predictions are of
importance for the study and reduction of the impact of
wind turbines on bird migration (Drewitt & Langston
2006; Hüppop et al. 2006), outbreaks and the spread
of zoonotic pathogens such as West Nile virus and
avian influenza (Reed et al. 2003; FAO 2005), and
local efforts to reduce the obstruction to migration
posed by tall buildings lit at night (e.g. Lights out
NY, http://www.nycaudubon.org/NYCASBirdWatch/
safeflightupdates, accessed 24 April 2007). The study
of migration stopover ecology and particularly the
arrival at and departure from stopover sites can greatly
benefit from improved understanding of the relation-
ship between weather and migratory activity (Schaub,
Liechti & Jenni 2004; Bulyuk & Tsvey 2006). Further-
more, improved knowledge of environmental factors
on bird migration is necessary to understand the
evolutionary forces behind migration (Pulido, Berthold
& van Noordwijk 1996) and the impact of climate
change (Sparks 1999).

Extrapolation of regression models to new locations
should be discouraged. Clearly, many existing models
are only valid locally. Future research will be directed
towards radar measurements from adjacent countries
to get more insight into the spatial distribution of
migrants, the relationships between migration intensi-
ties at different locations and the development of spatially
explicit dynamic models of migration intensity. Cross-
validation should be used to avoid overparameterization
in developing models. To make effective use of cross-
validation in model development, data sets should
represent inter- and intraseasonal variability of the
study site well.

Currently, the regression model developed in this
study is in operational use in the Royal Netherlands Air
Force. Every morning, new predictions of bird migra-
tion intensities for 3 days ahead are calculated from the
weather conditions forecasted by NOAA. The model
thus improves the reliability of the information needed
for warnings for high bird migration intensities and, if
necessary, rescheduling military flight training in the
Netherlands.
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